
CHAPTER 1

1st order Partial Differential Equations

Summary
The basic object of study in this book is the existence solutions to differential
equations in geometric interpretations of equations. We first discuss in this chapter
the basic facts on the 1st order differential equations.

1. 1st order Partial Differential Equations

We consider the 1st order differential equations defined on a domain Ω ⊂ Rn.
Let u(x) be the unknown function for x := (x1, . . . , xn) ∈ Ω. Derivative of u
is denoted by uj := ∂u

∂xj
. By the 1st order differential equations on u, we mean

F (x, u, u1, . . . , un) = 0 for a function F with ( ∂F
∂u1

, . . . , ∂F
∂un

) 6= 0. Basic classes of
1st order partial differential equations are as follows.

Definition 1.1. Differential equation F (x, u, u1, . . . , un) = 0 is quasi-linear if
F is linear in u1, . . . , un for some functions aj(x, u) and b(x, u) as in

a1(x, u)u1 + · · · an(x, u)un = b(x, u)

and is almost linear if aj s are functions of x as in

a1(x), u1 + · · ·+ an(x)un = b(x, u)

and is linear if b(x, u) = c(x)u+ d(x) for some functions c and d such that

a1(x)u1 + . . . an(x)un = b(x)u+ c(x).

1.1. 1st order linear homogeneous partial differential equations. Let
V := a1(x) ∂

∂x1
+ · · ·+ an(x) ∂

∂xn
be a nowhere vanishing C1 vector field on Ω. Then

1st order linear differential equation a1(x)u1 + . . . an(x)un = 0 is

V · u = 0

and the solution u(x) is constant along integral curves of V .
Definition 1.2. A C1 function u(x) is a first integral of V if V · u = 0 i.e.

V · ∇u = 0.
Definition 1.3. Functions u1, . . . , uk are said to be functionally dependent if

G(u1, . . . , uk) = 0 for some nontrivial function G.
Definition 1.4. u1, . . . , uk are functionally independent if they are not func-

tionally dependent on any open subset of Ω.
Generically V · ∇u = 0 has n − 1 functionally independent first integrals.

Suppose V =
∑n

j=1 aj(x) ∂
∂xj

is defined on Ω ⊂ Rn. V is presumably a co-
ordinate vector field since we can always find a local diffeomorphic coordinate
change ϕ : Ω → Rn with ϕ∗(V ) = ∂

∂x1
. Letting V = ∂

∂x1
in new coordinates,

the other n− 1 coordinate functions x2, . . . , xn are the first integrals.

1



2 1. 1ST ORDER PARTIAL DIFFERENTIAL EQUATIONS

The heuristics to calculate them explicitly is given. Let V =
∑n

j=1 aj(x) ∂
∂xj

and its integral curve have a infinitesimal line element (dx1, . . . , dxn). Along the
integral curve

dx1

a1
= · · · = dxn

an
.

Equating any two terms above leads to n− 1 equations, which we assume to be in
the formd(some function) = 0. These functions1 are the first integrals. Note that
these are also calld the constants of motions for their total derivative is zero along
their motion i.e. the integral curve. See [Zach] for details.

Example 1.5. Let V = (1, 0, 0) be a vector field in R3. The first integrals
are solutions for V · ∇u = 0 i.e. ∂u

∂x1
= 0. Then u(x1, x2, x3) = x2 or x3 are two

functionally independent first integrals. For any C1 function F in two variables,
F (x1, x2) is a first integral. The same solution is obtained by solving

dx1

1
=
dx2

0
=
dx3

0
to get x2 = constant and x3 = constant.

Example 1.6. Let V = −y ∂
∂x + x ∂

∂y in R2. Along its integral curves

dx

−y
=
dy

x

or xdx+ ydy = 0. Now d(x2 + y2) = 0 and φ = x2 + y2 is the first integral or the
constant of the motion.

Example 1.7. Let V = (x, y, z) be a vector field on (x, y, z) ∈ R3. They point
in the radial directions away from the origin. Its first integrals are u(x, y, z) which
solves xux + yuy + zuz = 0. The first equation of

dx

x
=
dy

y
=
dz

z

gives lnx = ln y + const i.e. y/x = const. Similarly the second equation gives
z/x = const. Now y/x and z/x are functionally indenpendent first integrals and
the general solution is u(x, y, z) = F (y/x, z/x) for any C1 function F .

Exercise 1.8. Find the first integrals for V = (y + z, y, x− y) in R3.

1.2. Integral submanifolds for vector fields on domains in Rn. Let
V =

∑n
j=1 ai(x) ∂

∂xj
be a vector field defined on Ω ⊂ Rn. A k-dimensional subman-

ifold S ⊂ Ω for k = 1, 2, . . . , n − 1 is an integral submanifold of V if V is tangent
to S. Integral submanifolds are sometimes called integral surfaces and 1 dimen-
sional integral submanifolds are preferrably called integral curves. The most basic
theorems related are as follows.

Theorem 1.9.
(1) If a curve C is transversal, that is, not tangential to V at x0, then there

exists a unique integral surface S of V containing C.
(2) If Γ is k-dimensional submanifold of Ω, transversal to V at x0 ∈ Γ, then

on a neighborhood of x0, there exists the unique integral surface S of
dimension k + 1 for k = 1, 2, . . . , n− 2 containing Γ.

1These are explicitly calculated only for special cases.
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Remark 1.10. The curves C and the surfaces S above are called respectively
initial curves and initial surfaces.

Example 1.11. Let V = (x, y, z) be a vector field on (x, y, z) ∈ R3 and C a
curve defined by x = 1,y = t and z = cos t for real number t. Find an integral
surface containing C near C(0) = (1, 0, 1).

Solution. Note that C ′(0) = (0, 1, 0) and V = (1, 0, 1) at C(0) = (1, 0, 1)
and C and V are transversal at this point. Hence there exists the unique integral
surface by the theorem . To get the integral surfaces explicitly, we seek for the first
integral u of V since u = const defines integral surfaces. Let (dx, dy, dz) be the
infinitesimal line element of an integral curve. Then

dx

x
=
dy

y
=
dz

z
.

The first identity yields φ1 := y/x = const and the second φ2 := z/x = const.
Hence the general form of the first integral is u(x, y, z) := F (φ1(x, y, z), φ2(x, y, z))
for any C1 function F . Now we fix F so that u(x, y, z) = 0 contains the initial curve
C. Restricted on C,

φ1 = y/x = t/1 = t, φ2 = z/x = cos t.

Hence φ2− cosφ1 = 0 and we fix F (φ1, φ2) = φ2− cosφ1. The integral surface that
contains C is

z

x
− cos

y

x
= 0

Exercise 1.12. V = (1, 1, z) is a vector field on (x, y, z) ∈ R3. Find the
integral surface containing the curve C: x = t, y = 0 and z = sin t for t ∈ R.

Exercise 1.13. Find the integral surface of V = (y − z, z − x, x − y) for the
initial curve C : x = t, y = 2t and z = 0 in the same setting as the previous exercise.

1.3. General Solutions to Quasi-linear 1st order Partial Differential
Equations. Keep the notation and let x := (x1, . . . , xn) ∈ Ω ⊂ Rn and u(x) be
the unknown function. Consider a quasi-linear 1st order P.D.E

(1.1) a1(x, u)u1 + a2(x, u)u2 + · · ·+ an(x, u)un = b(x, u)

To analyze it in geometric viewpoints as before, consider the vector field in Rn+1 =
{(x, u)}

V = a1
∂

∂x1
+ · · ·+ an

∂

∂xn
+ b

∂

∂u

associated with (1.1). Let φ(x, u) be the first integral such that φ(x, u) = 0 can
be solved for u = ψ(x) by the implicit function theorem, for which we require that
φu 6= 0. Then u = ψ(x) is a solution to (1.1).

Proof. Since φ(x, ψ(x)) = 0 for x ∈ Ω, differentiate it with respect to xi to
have for i = 1, . . . , n

(1.2) φi + φu · ui = 0.

φ(x, u) is the first integral of V and satisfies

(1.3) a1φ1 + · · ·+ anφn + bφu = 0

Combining (1.2) and (1.3),

a1(−φuu1) + · · ·+ an(−φuun) + bφu = 0.
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Cancelling out φu 6= 0,
a1u1 + · · ·+ anun = b

as desired.
Exercise 1.14. Let u(x, y) be defined on some open subset in R2 solving

x2ux + y2uy = 2xy.

Find the general solution.
Exercise 1.15. Find the general solution to

xux + yuy = u

in the same setting as above.
Remark 1.16. The approach in this section may be reformulated as follows

focusing more on geometric aspect thereof. Let u(x1, . . . , xn) be the unknown C2

function that solves
n∑

i=1

ai(x1, . . . , xn) · ui = b(x, u).

let V := (a1, . . . , an, b) the associated vector field in Rn+1 We first find the n dimen-
sional integral submanifold making the best use of the fact that this submanifold is
foliated by integral curves of V . Assume that our integral submanifold is given as
the graph of u = u(x). Denoting the infinitesimal line element of an integral curve
of V by (dx1, .., dxn, du) we have for some function λ

(1.4)
dx1

a1
= · · · = dxn

an
=
du

b
= λ.

Since the integral curve is embedded in u = u(x)

(1.5) du = u1dx1 + · · ·+ undxn.

Applying (1.4) upon (1.5),

λb = (u1a1 + · · ·+ unan)λ.

Cancelling out λ,
b = u1a1 + . . . unan

as desired.

1.4. Initial value problem of Quasi-linear 1st order Partial Differen-
tial Equations. We restrict our consideration to the case that u = u(x, y) is a
unknown function in two variables x and y. Given

a1(x, y, u)ux + a2(x, y, u)uy = b(x, y, u)

with some initial data along the curve (x(t), y(t), u(t)), let V = (a1, a2, b) ∈ R3 and
find two functionally independent first integrals φ1 and φ2. The General solution
is F (φ1, φ2) for any function F .

We discuss the geometric configuration between the initial data and the initial
curve to guarantee the unique existence of the solution or the submanifold contain-
ing the initial curve.

Recall that the vector field V transversal to the curve C(t) = (x(t), y(t), u(t))
has the unique integral manifold containing the curve. Note that the vector field V
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defined on C is transversal to C locally near t = 0 if and only if V (x(0), y(0), u(0))
is transversal to C ′(0).

Definition 1.17. The initial curve C(t) = (x(t), y(t), u(t)) is non-characteristic
if

det
(

x′(t) y′(t)
a1(x(t), y(t), u(t)) a2(x(t), y(t), u(t))

)
6= 0

For the non-characteristic initial curve given, we state without a proof the fol-
lowing basic fact.

Theorem 1.18. If the initial curve C(t) is non-characteristic at t = 0 , then
there exists the unique solution to the initial value problem.

Remark 1.19.

(1) If det
(

x′(0) y′(0)
a1(x(0), y(0), u(0)) a2(x(0), y(0), u(0))

)
= 0

and x′(0)/a1(0) = y′(0)/a2(0) 6= u′(0)/b then there exists no solution.
(2) If x′(t)/a1(t) = y′(t)/a2(t) = u′(t)/b(t) i.e. C(t) is an integral curve of

V then there exist infinitely many solutions. Note that we let ai(t) :=
ai(x(t), y(t), u(t)) and b(t) := b(x(t), y(t), u(t)) here.

Generally let u(x1, . . . , xn) defined on x = (x1, . . . , xn) ∈ Ω ⊂ Rn be a function
that solves

(1.6) a1(x, u)u1 + · · ·+ an(x, u)un = b(x, u)

with initial data along a n−1 dimensional submanifold C. We let C be parametrized
in t := (t1, · · · , tn−1) such that C is given by

x1 = x1(t)
...
xn = xn(t).

Then the initial data is given by u(t) = u(C(t)).
Definition 1.20. The initial data (x(t), u(t)) is non-characteristic if

det


∂x1
∂t1

· · · ∂xn

∂t1
...

. . .
...

∂x1
∂tn−1

· · · ∂xn

∂tn−1

a1(x(t), u(t)) · · · an(x(t), u(t))

 6= 0

along C.
Remark 1.21. If the equation is almost linear i.e.the coefficients function aj =

aj(x), we say that an initial surface i.e. a n− 1 dimensional submanifold x = x(t)
is non-characteristic if

det


∂x1
∂t1

· · · ∂xn

∂t1
...

. . .
...

∂x1
∂tn−1

· · · ∂xn

∂tn−1

a1(x(t)) · · · an(x(t))

 6= 0
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Note that it is an initial data that is called non-characteristic for quasi-linear equa-
tions and an initial hypersurface for almost linear equations.

As for two dimensional case, we have the follwing.
Theorem 1.22. A quasi-linear partial differential equation (1.6) is given. If

the initial data (x(t), u(t)) is non-characteristic on a neighborhood of t = 0, then
there exists unique solution u = u(x) of the initial value problem on a neighborhood
of x(0).

Corollary 1.23. For an almost linear 1st order partial differential equation,
let S be an n − 1 dimensional submanifold of Ω ⊂ Rn. If S is non-characteristic,
there exists the unique solution for arbitrary initial data along S.

Example 1.24. Find u(x, y) defined on (x, y) ∈ R2 that solves

(y + u) · ux + y · uy = x− y
Initial data: u = 1 + x on y = 1.

Solution. First find the integral surface of the associated vector field V =
(y + u, y, x− y).

dx

y + u
=
dy

y
=

du

x− y
=

d(x+ u)
x+ u

=
d(x− y)

u

the first three are equations for integral curves and the fourth is obtained by com-
bining the first and third ones, the fifth by combining the first and second ones.
Equating the second and the fourth terms log y = log(x + u) + constant hence
(x+u)/y =: φ1 = constant. Equating the third and the fifth (x−y)d(x−y) = u du
hence (x−y)2−u2 =: φ2 = constant. Now the general solution is F ((x+u)/y, (x−
y)2 − u2) = 0 for a function F . Along the initial curve,

φ1 = 2x+ 1, φ2 = (x− 1)2 − (x+ 1)2 = −4x,

hence our solution is 2(φ1 − 1) + φ2 = 0 i.e.

2
(
x+ u

y
− 1

)
+ (x− y)2 − u2 = 0.

The initial curve C : x→ (x, 1, x+1) has C ′(x) = (1, 0, 1) and V = (x+2, 1, x− 1)

on C. det
(

1 0
x+ 1 1

)
= 1 6= 0 and the initial data is non-characteristic, which

implies the uniqueness of our solution .

Exercise 1.25.
(1) V = (1, 1, z) is a vector field defined on (x, y, z) ∈ R3.

(a) Find integral curves.
(b) Find the integral surface containing the curve C(t) = (t, 0, cos t) for

−ε < t < ε.
(c) Find the solution z(x, y) to the following initial value problem{

zx + zy = z
z(x, 0) = cosx.

(2) Find the solution z = z(x, y) to

x(y − z)zx + y(z − x)zy = z · (x− y).
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(3) For z · zx + z · zy = x we impose the following initial conditions on the
curve x = t, y = t, t > 0. Discuss the existence and uniqueness of the
solutions.
(a) z = 2t
(b) z = sin(π/2t)
(c) Find f(t) such that there are infinitely many solutions for the initial

condition z = f(t).

1.5. One dimensional conservation law. Let x denote the position on the
real line and t the time. Consider some fluids flowing on the real line. Define ρ(x, t)
to be the density of the fluid at the specific position and time and q(x, t) the flux.

ρt + qx = 0

is called one dimensional conservation law, which is quivalent to Div(ρ(x, t), q(x, t)) =
0. It is the mass conservation law for fluids.

Physical motivation. Consider a small compartment I = [x, x+ dx], an in-
terval on the real line and the fluid which stay on this compartment at the moment.
Total mass of the fluids that stay on I is

∫ x+dx

x
ρ(x, t)dx and the out-flow rate of

fluids is the time derivative of this total mass. But the out-flow occurs only at the
endpoints x, x + dx and the rate of out-flow is the sum of flux at the endpoints
−(q(x + dx, t) − q(x, t)) taking into accout the sign. We have two expressions for
out-flow rate

d

dt

∫ x+dx

x

ρ(x, t)dx = −(q(x+ dx, t)− q(x, t))

,which we divide by dx, pass dx→ 0 to get the desired partial differential equation.2

2This model is used also for traffic control problem.
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